Abstract
A facile and direct oxidative esterification of primary alcohols
in water using a combination of the hypervalent iodine(III) reagent,
iodosobenzene (PhIO), and KBr has been developed. This methodology
is expected to be environmentally benign since it uses a recyclable
polymer-supported iodine(III) reagent in water.
Key words
alcohols - oxidations - esterification - hypervalent
iodine - polymers
References
<A NAME="RU00203ST-1A">1a</A>
Protective Group in Organic Synthesis
3rd
ed.:
Greene TM.
Wutz PG.
Wiley;
New
York:
1999.
p.149
<A NAME="RU00203ST-1B">1b</A>
Protective
Group in Organic Synthesis
3rd ed.:
Greene TM.
Wutz PG.
Wiley;
New
York:
1999.
p.373
<A NAME="RU00203ST-2A">2a</A>
Larock RC.
Comprehensive
Organic Transformation
2nd ed.:
VCH;
New
York:
1999.
p.1656
<A NAME="RU00203ST-2B">2b</A>
March J.
Advanced Organic Chemistry
John
Wiley & Sons;
New York:
1992.
p.1196
<A NAME="RU00203ST-3A">3a</A>
Kaneko R.
Seki K.
Suzuki M.
Chem. Ind. (London)
1971,
1016
<A NAME="RU00203ST-3B">3b</A>
Smith AB.
Sulikowski GA.
Sulikowski MM.
Fujimoto K.
J.
Am. Chem. Soc.
1992,
114:
2567
<A NAME="RU00203ST-3C">3c</A>
Foot JS.
Kanno H.
Giblin GMP.
Taylor RJK.
Synlett
2002,
1293
<A NAME="RU00203ST-4A">4a</A>
Corey EJ.
Samuelsson B.
J.
Org. Chem.
1984,
49:
4735
<A NAME="RU00203ST-4B">4b</A>
Guest AW.
Tetrahedron Lett.
1986,
27:
3049
<A NAME="RU00203ST-5">5</A>
Milovanovic JN.
Vasojevic M.
Gojkovic S.
J.
Chem. Soc., Perkin Trans. 2
1991,
1231
<A NAME="RU00203ST-6">6</A>
McDonald CE.
Holcomb HL.
Leathers TW.
Kennedy KE.
Microchem.
J.
1993,
47:
115
<A NAME="RU00203ST-7">7</A>
McDonald CE.
Nice LE.
Shaw AW.
Nestor NB.
Tetrahedron Lett.
1993,
34:
2741
Recent reviews see:
<A NAME="RU00203ST-8A">8a</A>
Stang PJ.
Zhdankin VV.
Chem. Rev.
1996,
96:
1123
<A NAME="RU00203ST-8B">8b</A>
Kita Y.
Takada T.
Tohma H.
Pure & Appl.
Chem.
1996,
68:
627
<A NAME="RU00203ST-8C">8c</A>
Varvoglis A.
Hypervalent Iodine in Organic Synthesis
Academic
Press;
San Diego:
1997.
<A NAME="RU00203ST-8D">8d</A>
Kitamura T.
Fujiwara Y.
Org. Prep. Proced. Int.
1997,
29:
409
<A NAME="RU00203ST-8E">8e</A>
Ochiai M. In
Chemistry in Hypervalent Compounds
Akiba K.
Wiley-VCH;
New York:
1999.
Chap.
12.
<A NAME="RU00203ST-8F">8f</A>
Wirth T.
Hirt UH.
Synthesis
1999,
1271
<A NAME="RU00203ST-8G">8g</A>
Zhdankin VV.
Stang PJ.
Chem.
Rev.
2002,
102:
2523
<A NAME="RU00203ST-8H">8h</A>
Hypervalent
Iodine Chemistry (Top. Curr. Chem. 224)
Wirth T.
Springer-Verlag;
Berlin, Heidelberg:
2003.
<A NAME="RU00203ST-9A">9a</A>
Tohma H.
Takizawa S.
Maegawa T.
Kita Y.
Angew. Chem.
Int. Ed.
2000,
39:
1306
<A NAME="RU00203ST-9B">9b</A>
Tohma H.
Maegawa T.
Takizawa S.
Kita Y.
Adv. Synth. Catal.
2002,
344:
328
<A NAME="RU00203ST-10">10</A>
Among the typical hypervalent iodine(III
or V) reagents, PhIO gave the best yield [75% yield],
while other reagents such as phenyliodine diacetate (PIDA) [47% yield], phenyliodine
bis(trifluoroacetate) (PIFA) [40% yield], Dess-Martin
periodinane [trace], and o-iodoxybenzoic
acid [trace], were also examined under the reaction
conditions described in Table
[1]
.
Reviews see:
<A NAME="RU00203ST-11A">11a</A>
Drewry DH.
Coe DM.
Poon S.
Med. Res. Rev.
1999,
19:
97
<A NAME="RU00203ST-11B">11b</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RU00203ST-11C">11c</A>
Bhalay G.
Dunstan A.
Glen A.
Synlett
2000,
1846
<A NAME="RU00203ST-11D">11d</A>
Kirschning A.
Monenschein H.
Wittenberg R.
Angew.
Chem. Int. Ed.
2001,
40:
650
<A NAME="RU00203ST-11E">11e</A>
Togo H.
Sakuratani K.
Synlett
2002,
1966
<A NAME="RU00203ST-12A">12a</A>
Togo H.
Nogami G.
Yokoyama M.
Synlett
1998,
534
<A NAME="RU00203ST-12B">12b</A>
Togo H.
Abe S.
Nogami G.
Yokoyama M.
Bull. Chem. Soc. Jpn.
1999,
72:
2351
<A NAME="RU00203ST-12C">12c</A>
Abe S.
Sakuratani K.
Togo H.
Synlett
2001,
22
<A NAME="RU00203ST-12D">12d</A>
Abe S.
Sakuratani K.
Togo H.
J.
Org. Chem.
2001,
66:
6174
<A NAME="RU00203ST-13A">13a</A>
Ley SV.
Thomas AW.
Finch H.
J. Chem. Soc., Perkin Trans 1
1999,
669
<A NAME="RU00203ST-13B">13b</A>
Ley SV.
Schucht O.
Thomas AW.
Murray PJ.
J.
Chem. Soc., Perkin Trans. 1
1999,
1251
<A NAME="RU00203ST-13C">13c</A>
Baxendale IR.
Ley SV.
Piutti C.
Angew. Chem. Int. Ed.
2002,
41:
2194
<A NAME="RU00203ST-13D">13d</A>
Baxendale IR.
Lee A.-L.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
2002,
1850
<A NAME="RU00203ST-14A">14a</A>
Tohma H.
Morioka H.
Takizawa S.
Arisawa M.
Kita Y.
Tetrahedron
2001,
57:
345
<A NAME="RU00203ST-14B">14b</A>
Tohma H.
Morioka H.
Harayama Y.
Hashizume M.
Kita Y.
Tetrahedron
Lett.
2001,
42:
6899
<A NAME="RU00203ST-15A">15a</A>
Okawara M.
Mizuta K.
Kogyo
Kagaku Zasshi
1961,
64:
232
<A NAME="RU00203ST-15B">15b</A>
Yamada Y.
Okawara M.
Makromol. Chem.
1972,
152:
153
<A NAME="RU00203ST-15C">15c</A>
Hallensleben ML.
Angew. Makromol. Chem.
1972,
27:
223
<A NAME="RU00203ST-16">16</A>
General Experimental
Procedure: Oxidation with PhIO-KBr: To
a stirred solution of 1 (1.0 mmol) and
KBr (0.5 mmol) in MeOH (1 mL) was added dropwise 0.5 N HCl aq (0.5
mL). PhIO (3.5 mmol) was added to the vigorously stirred solution
and stirring was continued for several hours at room temperature
while checking the reaction progress by GC or TLC. After completion
of the reaction, water (ca. 1.5 mL) was added to the mixture. The
mixture was filtrated through BOND ELUT C 18 (Varian), washed with
a small amount of water, and extracted with Et2O. The
filtrate was dried with MgSO4, and evaporated. The residue
was purified by column chromatography (SiO2/n-hexane-Et2O) to
give pure 2. Oxidation
with PDAIS-KBr: To a stirred solution of 1 (1.0
mmol) and KBr (1.0 mmol) in MeOH (2 mL) was added dropwise 0.5 N
HCl aq (1 mL). PDAIS (prepared by the reported procedure
[9b]
) (3.0 mmol) was added to the vigorously
stirred solution and stirring was continued for several hours at
room temperature. After completion of the reaction, water (ca. 3
mL) was added to the mixture. The mixture was filtered through BOND
ELUT C 18 (Varian) and washed with a small amount of water to remove
KBr. The residue was extracted with Et2O, and the filtrate
was dried and evaporated. The residue was purified by column chromatography
to give pure 2.